Exercise 3.4.9

Consider the heat equation with a known source $q(x, t)$:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+q(x, t) \quad \text { with } \quad u(0, t)=0 \quad \text { and } \quad u(L, t)=0 .
$$

Assume that $q(x, t)$ (for each $t>0$) is a piecewise smooth function of x. Also assume that u and $\partial u / \partial x$ are continuous functions of x (for $t>0$) and $\partial^{2} u / \partial x^{2}$ and $\partial u / \partial t$ are piecewise smooth. Thus,

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n}(t) \sin \frac{n \pi x}{L} .
$$

Justify spatial term-by-term differentiation. What ordinary differential equation does $b_{n}(t)$ satisfy? Do not solve this differential equation.

Solution

Assuming that u is continuous on $0 \leq x \leq L$, it has a Fourier sine series expansion.

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} B_{n}(t) \sin \frac{n \pi x}{L} \tag{1}
\end{equation*}
$$

Because $\partial u / \partial t$ is piecewise smooth, the series can be differentiated with respect to t term by term.

$$
\frac{\partial u}{\partial t}=\sum_{n=1}^{\infty} B_{n}^{\prime}(t) \sin \frac{n \pi x}{L}
$$

And because u is continuous and $u(0, t)=u(L, t)=0$, the sine series can be differentiated with respect to x term by term.

$$
\frac{\partial u}{\partial x}=\sum_{n=1}^{\infty} \frac{n \pi}{L} B_{n}(t) \cos \frac{n \pi x}{L}
$$

Since u_{x} is also continuous on $0 \leq x \leq L$, term-by-term differentiation of this cosine series with respect to x is justified.

$$
\frac{\partial^{2} u}{\partial x^{2}}=\sum_{n=1}^{\infty}\left(-\frac{n^{2} \pi^{2}}{L^{2}}\right) B_{n}(t) \sin \frac{n \pi x}{L}
$$

Substitute these infinite series into the PDE.

$$
\sum_{n=1}^{\infty} B_{n}^{\prime}(t) \sin \frac{n \pi x}{L}=k \sum_{n=1}^{\infty}\left(-\frac{n^{2} \pi^{2}}{L^{2}}\right) B_{n}(t) \sin \frac{n \pi x}{L}+q(x, t)
$$

Bring both series to the left side.

$$
\sum_{n=1}^{\infty} B_{n}^{\prime}(t) \sin \frac{n \pi x}{L}+k \sum_{n=1}^{\infty}\left(\frac{n^{2} \pi^{2}}{L^{2}}\right) B_{n}(t) \sin \frac{n \pi x}{L}=q(x, t)
$$

Combine the series and factor the summand.

$$
\sum_{n=1}^{\infty}\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \sin \frac{n \pi x}{L}=q(x, t)
$$

This is the Fourier sine series expansion of $q(x, t)$; because $q(x, t)$ is piecewise smooth, it's valid. To obtain the ODE for $B_{n}(t)$, multiply both sides by $\sin \frac{p \pi x}{L}$, where p is an integer,

$$
\sum_{n=1}^{\infty}\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}=q(x, t) \sin \frac{p \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty}\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x=\int_{0}^{L} q(x, t) \sin \frac{p \pi x}{L} d x
$$

Split up the integral on the left and bring the constants in front.

$$
\sum_{n=1}^{\infty}\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x=\int_{0}^{L} q(x, t) \sin \frac{p \pi x}{L} d x
$$

Since the sine functions are orthogonal, the integral on the left is zero if $n \neq p$. Only if $n=p$ does it yield a nonzero result.

$$
\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L} q(x, t) \sin \frac{n \pi x}{L} d x
$$

Evaluate the integral on the left.

$$
\left[B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)\right] \frac{L}{2}=\int_{0}^{L} q(x, t) \sin \frac{n \pi x}{L} d x
$$

The ODE that $B_{n}(t)$ satisfies is then

$$
B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} B_{n}(t)=\frac{2}{L} \int_{0}^{L} q(x, t) \sin \frac{n \pi x}{L} d x,
$$

which is a first-order linear inhomogeneous ODE, so it can be solved by using an integrating factor I.

$$
I=\exp \left(\int^{t} \frac{k n^{2} \pi^{2}}{L^{2}} d s\right)=\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

Multiply both sides of the ODE by I.

$$
\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}^{\prime}(t)+\frac{k n^{2} \pi^{2}}{L^{2}} \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}(t)=\left[\frac{2}{L} \int_{0}^{L} q(x, t) \sin \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

The left side can be written as $d / d t\left(I B_{n}\right)$ by the product rule.

$$
\frac{d}{d t}\left[\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}(t)\right]=\left[\frac{2}{L} \int_{0}^{L} q(x, t) \sin \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
$$

Integrate both sides with respect to t.

$$
\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}(t)=\int^{t}\left[\frac{2}{L} \int_{0}^{L} q(x, s) \sin \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+C_{1}
$$

The lower limit of integration is arbitrary and can be set to zero. C_{1} will be adjusted to account for any choice that's made.

$$
\exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} t\right) B_{n}(t)=\int_{0}^{t}\left[\frac{2}{L} \int_{0}^{L} q(x, s) \sin \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+C_{1}
$$

Solve for $B_{n}(t)$.

$$
B_{n}(t)=\exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)\left\{\int_{0}^{t}\left[\frac{2}{L} \int_{0}^{L} q(x, s) \sin \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+C_{1}\right\}
$$

An initial condition is needed to determine C_{1}. Use equation (1) along with $u(x, 0)=f(x)$ to determine it.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n}(0) \sin \frac{n \pi x}{L}=f(x)
$$

The coefficients are known,

$$
B_{n}(0)=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

so C_{1} is as well.

$$
B_{n}(0)=C_{1}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Therefore,

$$
\begin{aligned}
B_{n}(t) & =\exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)\left\{\int_{0}^{t}\left[\frac{2}{L} \int_{0}^{L} q(x, s) \sin \frac{n \pi x}{L} d x\right] \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d s+\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x\right\} \\
& =\frac{2}{L}\left\{\int_{0}^{t} \int_{0}^{L} q(x, s) \sin \frac{n \pi x}{L} \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d x d s+\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x\right\} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
\end{aligned}
$$

and the solution to the PDE is

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} B_{n}(t) \sin \frac{n \pi x}{L} \\
& =\sum_{n=1}^{\infty} \frac{2}{L}\left\{\int_{0}^{t} \int_{0}^{L} q(x, s) \sin \frac{n \pi x}{L} \exp \left(\frac{k n^{2} \pi^{2}}{L^{2}} s\right) d x d s+\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x\right\} \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L} .
\end{aligned}
$$

